\(\int (d x)^{3/2} (a+b \arcsin (c x)) \, dx\) [204]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 124 \[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=\frac {4 b (d x)^{3/2} \sqrt {1-c^2 x^2}}{25 c}+\frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}-\frac {12 b d^{3/2} E\left (\left .\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right )\right |-1\right )}{25 c^{5/2}}+\frac {12 b d^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right ),-1\right )}{25 c^{5/2}} \]

[Out]

2/5*(d*x)^(5/2)*(a+b*arcsin(c*x))/d-12/25*b*d^(3/2)*EllipticE(c^(1/2)*(d*x)^(1/2)/d^(1/2),I)/c^(5/2)+12/25*b*d
^(3/2)*EllipticF(c^(1/2)*(d*x)^(1/2)/d^(1/2),I)/c^(5/2)+4/25*b*(d*x)^(3/2)*(-c^2*x^2+1)^(1/2)/c

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {4723, 327, 335, 313, 227, 1213, 435} \[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=\frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}+\frac {12 b d^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right ),-1\right )}{25 c^{5/2}}-\frac {12 b d^{3/2} E\left (\left .\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right )\right |-1\right )}{25 c^{5/2}}+\frac {4 b \sqrt {1-c^2 x^2} (d x)^{3/2}}{25 c} \]

[In]

Int[(d*x)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(4*b*(d*x)^(3/2)*Sqrt[1 - c^2*x^2])/(25*c) + (2*(d*x)^(5/2)*(a + b*ArcSin[c*x]))/(5*d) - (12*b*d^(3/2)*Ellipti
cE[ArcSin[(Sqrt[c]*Sqrt[d*x])/Sqrt[d]], -1])/(25*c^(5/2)) + (12*b*d^(3/2)*EllipticF[ArcSin[(Sqrt[c]*Sqrt[d*x])
/Sqrt[d]], -1])/(25*c^(5/2))

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 313

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Dist[-q^(-1), Int[1/Sqrt[a + b*x^4]
, x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}-\frac {(2 b c) \int \frac {(d x)^{5/2}}{\sqrt {1-c^2 x^2}} \, dx}{5 d} \\ & = \frac {4 b (d x)^{3/2} \sqrt {1-c^2 x^2}}{25 c}+\frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}-\frac {(6 b d) \int \frac {\sqrt {d x}}{\sqrt {1-c^2 x^2}} \, dx}{25 c} \\ & = \frac {4 b (d x)^{3/2} \sqrt {1-c^2 x^2}}{25 c}+\frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}-\frac {(12 b) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {c^2 x^4}{d^2}}} \, dx,x,\sqrt {d x}\right )}{25 c} \\ & = \frac {4 b (d x)^{3/2} \sqrt {1-c^2 x^2}}{25 c}+\frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}+\frac {(12 b d) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {c^2 x^4}{d^2}}} \, dx,x,\sqrt {d x}\right )}{25 c^2}-\frac {(12 b d) \text {Subst}\left (\int \frac {1+\frac {c x^2}{d}}{\sqrt {1-\frac {c^2 x^4}{d^2}}} \, dx,x,\sqrt {d x}\right )}{25 c^2} \\ & = \frac {4 b (d x)^{3/2} \sqrt {1-c^2 x^2}}{25 c}+\frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}+\frac {12 b d^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right ),-1\right )}{25 c^{5/2}}-\frac {(12 b d) \text {Subst}\left (\int \frac {\sqrt {1+\frac {c x^2}{d}}}{\sqrt {1-\frac {c x^2}{d}}} \, dx,x,\sqrt {d x}\right )}{25 c^2} \\ & = \frac {4 b (d x)^{3/2} \sqrt {1-c^2 x^2}}{25 c}+\frac {2 (d x)^{5/2} (a+b \arcsin (c x))}{5 d}-\frac {12 b d^{3/2} E\left (\left .\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right )\right |-1\right )}{25 c^{5/2}}+\frac {12 b d^{3/2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {d x}}{\sqrt {d}}\right ),-1\right )}{25 c^{5/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.02 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.53 \[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=\frac {2 (d x)^{3/2} \left (5 a c x+2 b \sqrt {1-c^2 x^2}+5 b c x \arcsin (c x)-2 b \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},c^2 x^2\right )\right )}{25 c} \]

[In]

Integrate[(d*x)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(2*(d*x)^(3/2)*(5*a*c*x + 2*b*Sqrt[1 - c^2*x^2] + 5*b*c*x*ArcSin[c*x] - 2*b*Hypergeometric2F1[1/2, 3/4, 7/4, c
^2*x^2]))/(25*c)

Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.11

method result size
derivativedivides \(\frac {\frac {2 \left (d x \right )^{\frac {5}{2}} a}{5}+2 b \left (\frac {\left (d x \right )^{\frac {5}{2}} \arcsin \left (c x \right )}{5}-\frac {2 c \left (-\frac {d^{2} \left (d x \right )^{\frac {3}{2}} \sqrt {-c^{2} x^{2}+1}}{5 c^{2}}-\frac {3 d^{3} \sqrt {-c x +1}\, \sqrt {c x +1}\, \left (\operatorname {EllipticF}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )\right )}{5 c^{3} \sqrt {\frac {c}{d}}\, \sqrt {-c^{2} x^{2}+1}}\right )}{5 d}\right )}{d}\) \(138\)
default \(\frac {\frac {2 \left (d x \right )^{\frac {5}{2}} a}{5}+2 b \left (\frac {\left (d x \right )^{\frac {5}{2}} \arcsin \left (c x \right )}{5}-\frac {2 c \left (-\frac {d^{2} \left (d x \right )^{\frac {3}{2}} \sqrt {-c^{2} x^{2}+1}}{5 c^{2}}-\frac {3 d^{3} \sqrt {-c x +1}\, \sqrt {c x +1}\, \left (\operatorname {EllipticF}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )\right )}{5 c^{3} \sqrt {\frac {c}{d}}\, \sqrt {-c^{2} x^{2}+1}}\right )}{5 d}\right )}{d}\) \(138\)
parts \(\frac {2 a \left (d x \right )^{\frac {5}{2}}}{5 d}+\frac {2 b \left (\frac {\left (d x \right )^{\frac {5}{2}} \arcsin \left (c x \right )}{5}-\frac {2 c \left (-\frac {d^{2} \left (d x \right )^{\frac {3}{2}} \sqrt {-c^{2} x^{2}+1}}{5 c^{2}}-\frac {3 d^{3} \sqrt {-c x +1}\, \sqrt {c x +1}\, \left (\operatorname {EllipticF}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )-\operatorname {EllipticE}\left (\sqrt {d x}\, \sqrt {\frac {c}{d}}, i\right )\right )}{5 c^{3} \sqrt {\frac {c}{d}}\, \sqrt {-c^{2} x^{2}+1}}\right )}{5 d}\right )}{d}\) \(140\)

[In]

int((d*x)^(3/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

2/d*(1/5*(d*x)^(5/2)*a+b*(1/5*(d*x)^(5/2)*arcsin(c*x)-2/5*c/d*(-1/5/c^2*d^2*(d*x)^(3/2)*(-c^2*x^2+1)^(1/2)-3/5
/c^3*d^3/(c/d)^(1/2)*(-c*x+1)^(1/2)*(c*x+1)^(1/2)/(-c^2*x^2+1)^(1/2)*(EllipticF((d*x)^(1/2)*(c/d)^(1/2),I)-Ell
ipticE((d*x)^(1/2)*(c/d)^(1/2),I)))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.69 \[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=-\frac {2 \, {\left (6 \, \sqrt {-c^{2} d} b d {\rm weierstrassZeta}\left (\frac {4}{c^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4}{c^{2}}, 0, x\right )\right ) - {\left (5 \, b c^{3} d x^{2} \arcsin \left (c x\right ) + 5 \, a c^{3} d x^{2} + 2 \, \sqrt {-c^{2} x^{2} + 1} b c^{2} d x\right )} \sqrt {d x}\right )}}{25 \, c^{3}} \]

[In]

integrate((d*x)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

-2/25*(6*sqrt(-c^2*d)*b*d*weierstrassZeta(4/c^2, 0, weierstrassPInverse(4/c^2, 0, x)) - (5*b*c^3*d*x^2*arcsin(
c*x) + 5*a*c^3*d*x^2 + 2*sqrt(-c^2*x^2 + 1)*b*c^2*d*x)*sqrt(d*x))/c^3

Sympy [A] (verification not implemented)

Time = 11.19 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.69 \[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=a \left (\begin {cases} \frac {2 \left (d x\right )^{\frac {5}{2}}}{5 d} & \text {for}\: d \neq 0 \\0 & \text {otherwise} \end {cases}\right ) - b c \left (\begin {cases} \frac {d^{\frac {3}{2}} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {c^{2} x^{2} e^{2 i \pi }} \right )}}{5 \Gamma \left (\frac {11}{4}\right )} & \text {for}\: d > -\infty \wedge d < \infty \wedge d \neq 0 \\0 & \text {otherwise} \end {cases}\right ) + b \left (\begin {cases} \frac {2 \left (d x\right )^{\frac {5}{2}}}{5 d} & \text {for}\: d \neq 0 \\0 & \text {otherwise} \end {cases}\right ) \operatorname {asin}{\left (c x \right )} \]

[In]

integrate((d*x)**(3/2)*(a+b*asin(c*x)),x)

[Out]

a*Piecewise((2*(d*x)**(5/2)/(5*d), Ne(d, 0)), (0, True)) - b*c*Piecewise((d**(3/2)*x**(7/2)*gamma(7/4)*hyper((
1/2, 7/4), (11/4,), c**2*x**2*exp_polar(2*I*pi))/(5*gamma(11/4)), (d > -oo) & (d < oo) & Ne(d, 0)), (0, True))
 + b*Piecewise((2*(d*x)**(5/2)/(5*d), Ne(d, 0)), (0, True))*asin(c*x)

Maxima [F]

\[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=\int { \left (d x\right )^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )} \,d x } \]

[In]

integrate((d*x)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

2/5*b*d^(3/2)*x^(5/2)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + 2/5*(a*d*x^(5/2) + 5*b*c*d*integrate(1/5*sq
rt(c*x + 1)*sqrt(-c*x + 1)*x^(5/2)/(c^2*x^2 - 1), x))*sqrt(d)

Giac [F]

\[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=\int { \left (d x\right )^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )} \,d x } \]

[In]

integrate((d*x)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

integrate((d*x)^(3/2)*(b*arcsin(c*x) + a), x)

Mupad [F(-1)]

Timed out. \[ \int (d x)^{3/2} (a+b \arcsin (c x)) \, dx=\int \left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d\,x\right )}^{3/2} \,d x \]

[In]

int((a + b*asin(c*x))*(d*x)^(3/2),x)

[Out]

int((a + b*asin(c*x))*(d*x)^(3/2), x)